班級(jí)規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號(hào)) |
每期人數(shù)限3到5人。 |
上課時(shí)間和地點(diǎn) |
開課地址:【上海】同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站)【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領(lǐng)館區(qū)1號(hào)【沈陽分部】:沈陽理工大學(xué)【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學(xué)院 【南京分部】:金港大廈
最新開班 (連續(xù)班 、周末班、晚班):2020年3月16日 |
實(shí)驗(yàn)設(shè)備 |
☆資深工程師授課
☆注重質(zhì)量
☆邊講邊練
☆合格學(xué)員免費(fèi)推薦工作
★實(shí)驗(yàn)設(shè)備請(qǐng)點(diǎn)擊這兒查看★ |
質(zhì)量保障 |
1、培訓(xùn)過程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽;
2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費(fèi)提供課后技術(shù)支持。
3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。 |
課程大綱 |
|
Planner introduction
What is OptaPlanner?
What is a planning problem?
Use Cases and examples
Bin Packaging Problem Example
Problem statement
Problem size
Domain model diagram
Main method
Solver configuration
Domain model implementation
Score configuration
Travelling Salesman Problem (TSP)
Problem statement
Problem size
Domain model
Main method
Chaining
Solver configuration
Domain model implementation
Score configuration
Planner configuration
Overview
Solver configuration
Model your planning problem
Use the Solver
Score calculation
Score terminology
Choose a Score definition
Calculate the Score
Score calculation performance tricks
Reusing the Score calculation outside the Solver
Optimization algorithms
Search space size in the real world
Does Planner find the optimal solution?
Architecture overview
Optimization algorithms overview
Which optimization algorithms should I use?
SolverPhase
Scope overview
Termination
SolverEventListener
Custom SolverPhase
Move and neighborhood selection
Move and neighborhood introduction
Generic Move Selectors
Combining multiple MoveSelectors
EntitySelector
ValueSelector
General Selector features
Custom moves
Construction heuristics
First Fit
Best Fit
Advanced Greedy Fit
the Cheapest insertion
Regret insertion
Local search
Local Search concepts
Hill Climbing (Simple Local Search)
Tabu Search
Simulated Annealing
Late Acceptance
Step counting hill climbing
Late Simulated Annealing (experimental)
Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor
Evolutionary algorithms
Evolutionary Strategies
Genetic Algorithms
Hyperheuristics
Exact methods
Brute Force
Depth-first Search
Benchmarking and tweaking
Finding the best Solver configuration
Doing a benchmark
Benchmark report
Summary statistics
Statistics per dataset (graph and CSV)
Advanced benchmarking
Repeated planning
Introduction to repeated planning
Backup planning
Continuous planning (windowed planning)
Real-time planning (event based planning)
Drools
Short introduction to Drools
Writing Score Function in Drools
Integration
Overview
Persistent storage
SOA and ESB
Other environment
|