免费一看一级欧美-免费一区二区三区免费视频-免费伊人-免费影片-99精品网-99精品小视频

/

 

 

 

 
  IC培訓(xùn)
   
 
Big Data Business Intelligence for Criminal Intelligence Analysis培訓(xùn)

 
  班級(jí)規(guī)模及環(huán)境--熱線:4008699035 手機(jī):15921673576( 微信同號(hào))
      每個(gè)班級(jí)的人數(shù)限3到5人,互動(dòng)授課, 保障效果,小班授課。
  上間和地點(diǎn)
上課地點(diǎn):【上海】:同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站) 【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(hào)(中和大道) 【沈陽(yáng)分部】:沈陽(yáng)理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈
最近開(kāi)間(周末班/連續(xù)班/晚班):2018年3月18日
  實(shí)驗(yàn)設(shè)備
    ◆小班教學(xué),教學(xué)效果好
       
       ☆注重質(zhì)量☆邊講邊練

       ☆合格學(xué)員免費(fèi)推薦工作
       ★實(shí)驗(yàn)設(shè)備請(qǐng)點(diǎn)擊這兒查看★
  質(zhì)量保障

       1、培訓(xùn)過(guò)程中,如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽(tīng);
       2、培訓(xùn)結(jié)束后,授課老師留給學(xué)員聯(lián)系方式,保障培訓(xùn)效果,免費(fèi)提供課后技術(shù)支持。
       3、培訓(xùn)合格學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。☆合格學(xué)員免費(fèi)頒發(fā)相關(guān)工程師等資格證書(shū),提升職業(yè)資質(zhì)。專注高端技術(shù)培訓(xùn)15年,端海學(xué)員的能力得到大家的認(rèn)同,受到用人單位的廣泛贊譽(yù),端海的證書(shū)受到廣泛認(rèn)可。

課程大綱
 
  • Day 01
    =====
    Overview of Big Data Business Intelligence for Criminal Intelligence Analysis
  • Case Studies from Law Enforcement - Predictive Policing
    Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
    Emerging technology solutions such as gunshot sensors, surveillance video and social media
    Using Big Data technology to mitigate information overload
    Interfacing Big Data with Legacy data
    Basic understanding of enabling technologies in predictive analytics
    Data Integration & Dashboard visualization
    Fraud management
    Business Rules and Fraud detection
    Threat detection and profiling
    Cost benefit analysis for Big Data implementation
    Introduction to Big Data
  • Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
    MPP (Massively Parallel Processing) architecture
    Data Warehouses – static schema, slowly evolving dataset
    MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
    Hadoop Based Solutions – no conditions on structure of dataset.
    Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
    Apache Spark for stream processing
    Batch- suited for analytical/non-interactive
    Volume : CEP streaming data
    Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
    Less production ready – Storm/S4
    NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
    NoSQL solutions
  • KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
    KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
    KV Store (Hierarchical) - GT.m, Cache
    KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
    KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
    Tuple Store - Gigaspaces, Coord, Apache River
    Object Database - ZopeDB, DB40, Shoal
    Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
    Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
    Varieties of Data: Introduction to Data Cleaning issues in Big Data
  • RDBMS – static structure/schema, does not promote agile, exploratory environment.
    NoSQL – semi structured, enough structure to store data without exact schema before storing data
    Data cleaning issues
    Hadoop
  • When to select Hadoop?
    STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
    SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
    Warehousing data = HUGE effort and static even after implementation
    For variety & volume of data, crunched on commodity hardware – HADOOP
    Commodity H/W needed to create a Hadoop Cluster
    Introduction to Map Reduce /HDFS
  • MapReduce – distribute computing over multiple servers
    HDFS – make data available locally for the computing process (with redundancy)
    Data – can be unstructured/schema-less (unlike RDBMS)
    Developer responsibility to make sense of data
    Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
    =====
    Day 02
    =====
    Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?
  • Hadoop vs. Other NoSQL solutions
    For interactive, random access to data
    Hbase (column oriented database) on top of Hadoop
    Random access to data but restrictions imposed (max 1 PB)
    Not good for ad-hoc analytics, good for logging, counting, time-series
    Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
    Flume – Stream data (e.g. log data) into HDFS
    Big Data Management System
  • Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
    Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
    Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
    In Cloud : Whirr
    Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence
  • Introduction to Machine Learning
    Learning classification techniques
    Bayesian Prediction -- preparing a training file
    Support Vector Machine
    KNN p-Tree Algebra & vertical mining
    Neural Networks
    Big Data large variable problem -- Random forest (RF)
    Big Data Automation problem – Multi-model ensemble RF
    Automation through Soft10-M
    Text analytic tool-Treeminer
    Agile learning
    Agent based learning
    Distributed learning
    Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
    Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis
  • Technology and the investigative process
    Insight analytic
    Visualization analytics
    Structured predictive analytics
    Unstructured predictive analytics
    Threat/fraudstar/vendor profiling
    Recommendation Engine
    Pattern detection
    Rule/Scenario discovery – failure, fraud, optimization
    Root cause discovery
    Sentiment analysis
    CRM analytics
    Network analytics
    Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
    Technology assisted review
    Fraud analytics
    Real Time Analytic
    =====
    Day 03
    =====
    Real Time and Scalable Analytics Over Hadoop
  • Why common analytic algorithms fail in Hadoop/HDFS
    Apache Hama- for Bulk Synchronous distributed computing
    Apache SPARK- for cluster computing and real time analytic
    CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
    KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
    Tools for eDiscovery and Forensics
  • eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
    Predictive coding and Technology Assisted Review (TAR)
    Live demo of vMiner for understanding how TAR enables faster discovery
    Faster indexing through HDFS – Velocity of data
    NLP (Natural Language processing) – open source products and techniques
    eDiscovery in foreign languages -- technology for foreign language processing
    Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification
  • Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
    Network infrastructure / Large datapipe / Response ETL for real time analytic
    Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
    Gathering disparate data for Criminal Intelligence Analysis
  • Using IoT (Internet of Things) as sensors for capturing data
    Using Satellite Imagery for Domestic Surveillance
    Using surveillance and image data for criminal identification
    Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
    Combining automated data retrieval with data obtained from informants, interrogation, and research
    Forecasting criminal activity
    =====
    Day 04
    =====
    Fraud prevention BI from Big Data in Fraud Analytics
  • Basic classification of Fraud Analytics -- rules-based vs predictive analytics
    Supervised vs unsupervised Machine learning for Fraud pattern detection
    Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
    Social Media Analytics -- Intelligence gathering and analysis
  • How Social Media is used by criminals to organize, recruit and plan
    Big Data ETL API for extracting social media data
    Text, image, meta data and video
    Sentiment analysis from social media feed
    Contextual and non-contextual filtering of social media feed
    Social Media Dashboard to integrate diverse social media
    Automated profiling of social media profile
    Live demo of each analytic will be given through Treeminer Tool
    Big Data Analytics in image processing and video feeds
  • Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
    LTFS (Linear Tape File System) and LTO (Linear Tape Open)
    GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
    Fundamentals of image analytics
    Object recognition
    Image segmentation
    Motion tracking
    3-D image reconstruction
    Biometrics, DNA and Next Generation Identification Programs
  • Beyond fingerprinting and facial recognition
    Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
    Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
    Big Data Dashboard for quick accessibility of diverse data and display :
  • Integration of existing application platform with Big Data Dashboard
    Big Data management
    Case Study of Big Data Dashboard: Tableau and Pentaho
    Use Big Data app to push location based services in Govt.
    Tracking system and management
    =====
    Day 05
    =====
    How to justify Big Data BI implementation within an organization:
  • Defining the ROI (Return on Investment) for implementing Big Data
    Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
    Revenue gain from lower database licensing cost
    Revenue gain from location based services
    Cost savings from fraud prevention
    An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
    Step by Step procedure for replacing a legacy data system with a Big Data System
  • Big Data Migration Roadmap
    What critical information is needed before architecting a Big Data system?
    What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
    How to estimate data growth
    Case studies
    Review of Big Data Vendors and review of their products.
  • Accenture
    APTEAN (Formerly CDC Software)
    Cisco Systems
    Cloudera
    Dell
    EMC
    GoodData Corporation
    Guavus
    Hitachi Data Systems
    Hortonworks
    HP
    IBM
    Informatica
    Intel
    Jaspersoft
    Microsoft
    MongoDB (Formerly 10Gen)
    MU Sigma
    Netapp
    Opera Solutions
    Oracle
    Pentaho
    Platfora
    Qliktech
    Quantum
    Rackspace
    Revolution Analytics
    Salesforce
    SAP
    SAS Institute
    Sisense
    Software AG/Terracotta
    Soft10 Automation
    Splunk
    Sqrrl
    Supermicro
    Tableau Software
    Teradata
    Think Big Analytics
    Tidemark Systems
    Treeminer
    VMware (Part of EMC)
    Q/A session
端海教育實(shí)驗(yàn)設(shè)備
android開(kāi)發(fā)板
linux_android開(kāi)發(fā)板
fpga圖像處理
fpga培訓(xùn)班*
 
本部份程部分實(shí)驗(yàn)室實(shí)景
端海實(shí)驗(yàn)室
實(shí)驗(yàn)室
端海培訓(xùn)優(yōu)勢(shì)
 
  合作伙伴與授權(quán)機(jī)構(gòu)



Altera全球合作培訓(xùn)機(jī)構(gòu)



諾基亞Symbian公司授權(quán)培訓(xùn)中心


Atmel公司全球戰(zhàn)略合作伙伴


微軟全球嵌入式培訓(xùn)合作伙伴


英國(guó)ARM公司授權(quán)培訓(xùn)中心


ARM工具關(guān)鍵合作單位
  我們培訓(xùn)過(guò)的企業(yè)客戶評(píng)價(jià):
    端海的andriod系統(tǒng)與應(yīng)用培訓(xùn)完全符合了我公司的要求,達(dá)到了我公司培訓(xùn)的目的。特別值得一提的是授部份講師針對(duì)我們公司的開(kāi)發(fā)的項(xiàng)目專門提供了一些很好程序的源代碼,基本滿足了我們的項(xiàng)目要求。
——上海貝爾,李工
    端海培訓(xùn)DSP2000的老師,上部份思路清晰,口齒清楚,由淺入深,重點(diǎn)突出,培訓(xùn)效果是不錯(cuò)的,
達(dá)到了我們想要的效果,希望繼續(xù)合作下去。
——中國(guó)電子科技集團(tuán)技術(shù)部主任馬工
    端海的FPGA培訓(xùn)很好地填補(bǔ)了高校FPGA培訓(xùn)空白,不錯(cuò)。總之,有利于學(xué)生的發(fā)展,有利于教師的發(fā)展,有利于部份程的發(fā)展,有利于社會(huì)的發(fā)展。
——上海電子學(xué)院,馮老師
    端海給我們公司提供的Dsp6000培訓(xùn),符合我們項(xiàng)目的開(kāi)發(fā)要求,解決了很多困惑我們很久的問(wèn)題,與端海的合作非常愉快。
——公安部第三研究所,項(xiàng)目部負(fù)責(zé)人李先生
    MTK培訓(xùn)-我在網(wǎng)上找了很久,就是找不到。在端海居然有MTK驅(qū)動(dòng)的培訓(xùn),老師經(jīng)驗(yàn)很豐富,知識(shí)面很廣。下一個(gè)還想培訓(xùn)IPHONE蘋果手機(jī)。跟他們合作很愉快,老師很有人情味,態(tài)度很和藹。
——臺(tái)灣雙揚(yáng)科技,研發(fā)處經(jīng)理,楊先生
    端海對(duì)我們公司的iPhone培訓(xùn),實(shí)驗(yàn)項(xiàng)目很多,確實(shí)學(xué)到了東西。受益無(wú)窮啊!特別是對(duì)于那種正在開(kāi)發(fā)項(xiàng)目的,確實(shí)是物超所值。
——臺(tái)灣歐澤科技,張工
    通過(guò)參加Symbian培訓(xùn),再做Symbian相關(guān)的項(xiàng)目感覺(jué)更加得心應(yīng)手了,理論加實(shí)踐的授部份方式,很有針對(duì)性,非常的適合我們。學(xué)完之后,很輕松的就完成了我們的項(xiàng)目。
——IBM公司,沈經(jīng)理
    有端海這樣的DSP開(kāi)發(fā)培訓(xùn)單位,是教育行業(yè)的財(cái)富,聽(tīng)了他們的部份,茅塞頓開(kāi)。
——上海醫(yī)療器械高等學(xué)校,羅老師
  我們最新培訓(xùn)過(guò)的企業(yè)客戶以及培訓(xùn)的主要內(nèi)容:
 

一汽海馬汽車DSP培訓(xùn)
蘇州金屬研究院DSP培訓(xùn)
南京南瑞集團(tuán)技術(shù)FPGA培訓(xùn)
西安愛(ài)生技術(shù)集團(tuán)FPGA培訓(xùn),DSP培訓(xùn)
成都熊谷加世電氣DSP培訓(xùn)
福斯賽諾分析儀器(蘇州)FPGA培訓(xùn)
南京國(guó)電工程FPGA培訓(xùn)
北京環(huán)境特性研究所達(dá)芬奇培訓(xùn)
中國(guó)科學(xué)院微系統(tǒng)與信息技術(shù)研究所FPGA高級(jí)培訓(xùn)
重慶網(wǎng)視只能流技術(shù)開(kāi)發(fā)達(dá)芬奇培訓(xùn)
無(wú)錫力芯微電子股份IC電磁兼容
河北科學(xué)院研究所FPGA培訓(xùn)
上海微小衛(wèi)星工程中心DSP培訓(xùn)
廣州航天航空POWERPC培訓(xùn)
桂林航天工學(xué)院DSP培訓(xùn)
江蘇五維電子科技達(dá)芬奇培訓(xùn)
無(wú)錫步進(jìn)電機(jī)自動(dòng)控制技術(shù)DSP培訓(xùn)
江門市安利電源工程DSP培訓(xùn)
長(zhǎng)江力偉股份CADENCE培訓(xùn)
愛(ài)普生科技(無(wú)錫)數(shù)字模擬電路
河南平高電氣DSP培訓(xùn)
中國(guó)航天員科研訓(xùn)練中心A/D仿真
常州易控汽車電子WINDOWS驅(qū)動(dòng)培訓(xùn)
南通大學(xué)DSP培訓(xùn)
上海集成電路研發(fā)中心達(dá)芬奇培訓(xùn)
北京瑞志合眾科技WINDOWS驅(qū)動(dòng)培訓(xùn)
江蘇金智科技股份FPGA高級(jí)培訓(xùn)
中國(guó)重工第710研究所FPGA高級(jí)培訓(xùn)
蕪湖伯特利汽車安全系統(tǒng)DSP培訓(xùn)
廈門中智能軟件技術(shù)Android培訓(xùn)
上海科慢車輛部件系統(tǒng)EMC培訓(xùn)
中國(guó)電子科技集團(tuán)第五十研究所,軟件無(wú)線電培訓(xùn)
蘇州浩克系統(tǒng)科技FPGA培訓(xùn)
上海申達(dá)自動(dòng)防范系統(tǒng)FPGA培訓(xùn)
四川長(zhǎng)虹佳華信息MTK培訓(xùn)
公安部第三研究所--FPGA初中高技術(shù)開(kāi)發(fā)培訓(xùn)以及DSP達(dá)芬奇芯片視頻、圖像處理技術(shù)培訓(xùn)
上海電子信息職業(yè)技術(shù)學(xué)院--FPGA高級(jí)開(kāi)發(fā)技術(shù)培訓(xùn)
上海點(diǎn)逸網(wǎng)絡(luò)科技有限公司--3G手機(jī)ANDROID應(yīng)用和系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
格科微電子有限公司--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
南昌航空大學(xué)--fpga高級(jí)開(kāi)發(fā)技術(shù)培訓(xùn)
IBM公司--3G手機(jī)ANDROID系統(tǒng)和應(yīng)用技術(shù)開(kāi)發(fā)培訓(xùn)
上海貝爾--3G手機(jī)ANDROID系統(tǒng)和應(yīng)用技術(shù)開(kāi)發(fā)培訓(xùn)
中國(guó)雙飛--Vxworks應(yīng)用和BSP開(kāi)發(fā)技術(shù)培訓(xùn)

 

上海水務(wù)建設(shè)工程有限公司--Alter/XilinxFPGA應(yīng)用開(kāi)發(fā)技術(shù)培訓(xùn)
恩法半導(dǎo)體科技--AllegroCandencePCB仿真和信號(hào)完整性技術(shù)培訓(xùn)
中國(guó)計(jì)量學(xué)院--3G手機(jī)ANDROID應(yīng)用和系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
冠捷科技--FPGA芯片設(shè)計(jì)技術(shù)培訓(xùn)
芬尼克茲節(jié)能設(shè)備--FPGA高級(jí)技術(shù)開(kāi)發(fā)培訓(xùn)
川奇光電--3G手機(jī)ANDROID系統(tǒng)和應(yīng)用技術(shù)開(kāi)發(fā)培訓(xùn)
東華大學(xué)--Dsp6000系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
上海理工大學(xué)--FPGA高級(jí)開(kāi)發(fā)技術(shù)培訓(xùn)
同濟(jì)大學(xué)--Dsp6000圖像/視頻處理技術(shù)培訓(xùn)
上海醫(yī)療器械高等專科學(xué)校--Dsp6000圖像/視頻處理技術(shù)培訓(xùn)
中航工業(yè)無(wú)線電電子研究所--Vxworks應(yīng)用和BSP開(kāi)發(fā)技術(shù)培訓(xùn)
北京交通大學(xué)--Powerpc開(kāi)發(fā)技術(shù)培訓(xùn)
浙江理工大學(xué)--Dsp6000圖像/視頻處理技術(shù)培訓(xùn)
臺(tái)灣雙陽(yáng)科技股份有限公司--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
滾石移動(dòng)--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
冠捷半導(dǎo)體--Linux系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
奧波--CortexM3+uC/OS開(kāi)發(fā)技術(shù)培訓(xùn)
迅時(shí)通信--WinCE應(yīng)用與驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
海鷹醫(yī)療電子系統(tǒng)--DSP6000圖像處理技術(shù)培訓(xùn)
博耀科技--Linux系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
華路時(shí)代信息技術(shù)--VxWorksBSP開(kāi)發(fā)技術(shù)培訓(xùn)
臺(tái)灣歐澤科技--iPhone開(kāi)發(fā)技術(shù)培訓(xùn)
寶康電子--AllegroCandencePCB仿真和信號(hào)完整性技術(shù)培訓(xùn)
上海天能電子有限公司--AllegroCandencePCB仿真和信號(hào)完整性技術(shù)培訓(xùn)
上海亨通光電科技有限公司--andriod應(yīng)用和系統(tǒng)移植技術(shù)培訓(xùn)
上海智搜文化傳播有限公司--Symbian開(kāi)發(fā)培訓(xùn)
先先信息科技有限公司--brew手機(jī)開(kāi)發(fā)技術(shù)培訓(xùn)
鼎捷集團(tuán)--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
傲然科技--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
中軟國(guó)際--Linux系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
龍旗控股集團(tuán)--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
研祥智能股份有限公司--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
羅氏診斷--Linux應(yīng)用開(kāi)發(fā)技術(shù)培訓(xùn)
西東控制集團(tuán)--DSP2000應(yīng)用技術(shù)及DSP2000在光伏并網(wǎng)發(fā)電中的應(yīng)用與開(kāi)發(fā)
科大訊飛--MTK應(yīng)用(MMI)和驅(qū)動(dòng)開(kāi)發(fā)技術(shù)培訓(xùn)
東北農(nóng)業(yè)大學(xué)--IPHONE蘋果應(yīng)用開(kāi)發(fā)技術(shù)培訓(xùn)
中國(guó)電子科技集團(tuán)--Dsp2000系統(tǒng)和應(yīng)用開(kāi)發(fā)技術(shù)培訓(xùn)
中國(guó)船舶重工集團(tuán)--Dsp2000系統(tǒng)開(kāi)發(fā)技術(shù)培訓(xùn)
晶方半導(dǎo)體--FPGA初中高技術(shù)培訓(xùn)
肯特智能儀器有限公司--FPGA初中高技術(shù)培訓(xùn)
哈爾濱大學(xué)--IPHONE蘋果應(yīng)用開(kāi)發(fā)技術(shù)培訓(xùn)
昆明電器科學(xué)研究所--Dsp2000系統(tǒng)開(kāi)發(fā)技術(shù)
奇瑞汽車股份--單片機(jī)應(yīng)用開(kāi)發(fā)技術(shù)培訓(xùn)


 

-

 

  端海企業(yè)學(xué)院  
友情鏈接:Cadence培訓(xùn) ICEPAK培訓(xùn) EMC培訓(xùn) 電磁兼容培訓(xùn) sas容培訓(xùn) 羅克韋爾PLC培訓(xùn) 歐姆龍PLC培訓(xùn) PLC培訓(xùn) 三菱PLC培訓(xùn) 西門子PLC培訓(xùn) dcs培訓(xùn) 橫河dcs培訓(xùn) 艾默生培訓(xùn) robot CAD培訓(xùn) eplan培訓(xùn) dcs培訓(xùn) 電路板設(shè)計(jì)培訓(xùn) 浙大dcs培訓(xùn) PCB設(shè)計(jì)培訓(xùn) adams培訓(xùn) fluent培訓(xùn)系列課程 培訓(xùn)機(jī)構(gòu)課程短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 長(zhǎng)期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班培訓(xùn) 南京 NS3培訓(xùn) OpenGL培訓(xùn) FPGA培訓(xùn) PCIE培訓(xùn) MTK培訓(xùn) Cortex訓(xùn) Arduino培訓(xùn) 單片機(jī)培訓(xùn) EMC培訓(xùn) 信號(hào)完整性培訓(xùn) 電源設(shè)計(jì)培訓(xùn) 電機(jī)控制培訓(xùn) LabVIEW培訓(xùn) OPENCV培訓(xùn) 集成電路培訓(xùn) UVM驗(yàn)證培訓(xùn) VxWorks培訓(xùn) CST培訓(xùn) PLC培訓(xùn) Python培訓(xùn) ANSYS培訓(xùn) VB語(yǔ)言培訓(xùn) HFSS培訓(xùn) SAS培訓(xùn) Ansys培訓(xùn) 短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 長(zhǎng)期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班 端海 教育 企業(yè) 學(xué)院 培訓(xùn)課程 系列班 級(jí) 長(zhǎng)期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班 短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 端海教育企業(yè)學(xué)院培訓(xùn)課程 系列班級(jí)
在線客服
主站蜘蛛池模板: 亚洲精品一卡2卡3卡三卡四卡 | 国产一区二区三区在线观看视频 | 在线观看91精品国产下载 | 国产成人aaa在线视频免费观看 | 久久婷五月综合 | swag国产在线 | 女人18毛片水真多国产 | 国产免费久久精品99久久 | 老司机精品导航 | 成人精品亚洲 | 视频一区二区三区欧美日韩 | 在线国产中文字幕 | 亚洲人成网站在线观看播放动漫 | 俺也来国产精品欧美在线观看 | 国产magnet| 亚洲综合91社区精品福利 | 欧美在线免费观看 | 自拍 欧美 在线 综合 另类 | avtt2015天堂网 | h漫在线播放 | 久热青青青在线视频精品 | 黑人巨大精品欧美一区二区区 | 在线视频91 | 好男人影视www | 久久久精品免费观看 | 麻豆视频传媒二区 | 亚洲欧洲精品一区二区三区 | 4hu四虎永久免在线视 | 尤物国产在线精品福利一区 | 中文字幕在线播放量 | 香蕉视频在线免费看 | 亚洲二三区 | 欧美性战 | 亚洲影视天堂 | 国内精品久久久久久久久蜜桃 | 欧美性另类高清 | 欧美色丁香 | 最新毛片网 | 99久久免费精品视频 | 最新亚洲精品国自产在线 | 亚洲精品国产精品乱码不97 |