免费一看一级欧美-免费一区二区三区免费视频-免费伊人-免费影片-99精品网-99精品小视频

曙海教育集團(tuán)
全國報(bào)名免費(fèi)熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號(hào)) QQ:1299983702
首頁 課程表 在線聊 報(bào)名 講師 品牌 QQ聊 活動(dòng) 就業(yè)
 
Advanced Lua培訓(xùn)
 
   班級(jí)人數(shù)--熱線:4008699035 手機(jī):15921673576( 微信同號(hào))
      增加互動(dòng)環(huán)節(jié), 保障培訓(xùn)效果,堅(jiān)持小班授課,每個(gè)班級(jí)的人數(shù)限3到5人,超過限定人數(shù),安排到下一期進(jìn)行學(xué)習(xí)。
   授課地點(diǎn)及時(shí)間
上課地點(diǎn):【上海】:同濟(jì)大學(xué)(滬西)/新城金郡商務(wù)樓(11號(hào)線白銀路站) 【深圳分部】:電影大廈(地鐵一號(hào)線大劇院站)/深圳大學(xué)成教院 【北京分部】:北京中山學(xué)院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(hào)(中和大道) 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈 【沈陽分部】:沈陽理工大學(xué)/六宅臻品 【鄭州分部】:鄭州大學(xué)/錦華大廈 【石家莊分部】:河北科技大學(xué)/瑞景大廈
開班時(shí)間(連續(xù)班/晚班/周末班):2020年3月16日
   課時(shí)
     ◆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆若學(xué)員成績達(dá)到合格及以上水平,將獲得免費(fèi)推薦工作的機(jī)會(huì)
        ★查看實(shí)驗(yàn)設(shè)備詳情,請點(diǎn)擊此處★
   質(zhì)量以及保障

      ☆ 1、如有部分內(nèi)容理解不透或消化不好,可免費(fèi)在以后培訓(xùn)班中重聽;
      ☆ 2、在課程結(jié)束之后,授課老師會(huì)留給學(xué)員手機(jī)和E-mail,免費(fèi)提供半年的課程技術(shù)支持,以便保證培訓(xùn)后的繼續(xù)消化;
      ☆3、合格的學(xué)員可享受免費(fèi)推薦就業(yè)機(jī)會(huì)。
      ☆4、合格學(xué)員免費(fèi)頒發(fā)相關(guān)工程師等資格證書,提升您的職業(yè)資質(zhì)。

課程大綱
 
  • The course is divided into three separate days, the third being optional.
  • Day 1 Machine Learning & Deep Learning: theoretical concepts
    1. Introduction IA, Machine Learning & Deep Learning
  • History, basic concepts and usual applications of artificial intelligence far
  • Of the fantasies carried by this domain
  • Collective Intelligence: aggregating knowledge shared by many virtual agents
  • Genetic algorithms: to evolve a population of virtual agents by selection
  • Usual Learning Machine: definition.
  • Types of tasks: supervised learning, unsupervised learning, reinforcement learning
  • Types of actions: classification, regression, clustering, density estimation, reduction of
  • dimensionality
  • Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree
  • Machine learning VS Deep Learning: problems on which Machine Learning remains
  • Today the state of the art (Random Forests & XGBoosts)
  • 2. Basic Concepts of a Neural Network (Application: multilayer perceptron)
  • Reminder of mathematical bases.
  • Definition of a network of neurons: classical architecture, activation and
  • Weighting of previous activations, depth of a network
  • Definition of the learning of a network of neurons: functions of cost, backpropagation,
  • Stochastic gradient descent, maximum likelihood.
  • Modeling of a neural network: modeling input and output data according to
  • The type of problem (regression, classification ...). Curse of dimensionality. Distinction between
  • Multifeature data and signal. Choice of a cost function according to the data.
  • Approximation of a function by a network of neurons: presentation and examples
  • Approximation of a distribution by a network of neurons: presentation and examples
  • Data Augmentation: how to balance a dataset
  • Generalization of the results of a network of neurons.
  • Initialization and regularization of a neural network: L1 / L2 regularization, Batch
  • Normalization ...
  • Optimization and convergence algorithms.
  • 3. Standard ML / DL Tools
  • A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.
  • Data management tools: Apache Spark, Apache Hadoop
  • Tools Machine Learning: Numpy, Scipy, Scikit
  • DL high level frameworks: PyTorch, Keras, Lasagne
  • Low level DL frameworks: Theano, Torch, Caffe, Tensorflow
  • Day 2 Convolutional and Recurrent Networks
    4. Convolutional Neural Networks (CNN).
  • Presentation of the CNNs: fundamental principles and applications
  • Basic operation of a CNN: convolutional layer, use of a kernel,
  • Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and
  • 3D.
  • Presentation of the different CNN architectures that brought the state of the art in classification
  • Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of
  • Innovations brought about by each architecture and their more global applications (Convolution
  • 1x1 or residual connections)
  • Use of an attention model.
  • Application to a common classification case (text or image)
  • CNNs for generation: superresolution, pixeltopixel segmentation. Presentation of
  • Main strategies for increasing feature maps for image generation.
  • 5. Recurrent Neural Networks (RNN).
  • Presentation of RNNs: fundamental principles and applications.
  • Basic operation of the RNN: hidden activation, back propagation through time,
  • Unfolded version.
  • Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).
  • Presentation of the different states and the evolutions brought by these architectures
  • Convergence and vanising gradient problems
  • Classical architectures: Prediction of a temporal series, classification ...
  • RNN Encoder Decoder type architecture. Use of an attention model.
  • NLP applications: word / character encoding, translation.
  • Video Applications: prediction of the next generated image of a video sequence.
  • Day 3 Generational Models and Reinforcement Learning
    6. Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).
  • Presentation of the generational models, link with the CNNs seen in day 2
  • Autoencoder: reduction of dimensionality and limited generation
  • Variational Autoencoder: generational model and approximation of the distribution of a
  • given. Definition and use of latent space. Reparameterization trick. Applications and
  • Limits observed
  • Generative Adversarial Networks: Fundamentals. Dual Network Architecture
  • (Generator and discriminator) with alternate learning, cost functions available.
  • Convergence of a GAN and difficulties encountered.
  • Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.
  • Applications for the generation of images or photographs, text generation, super
    resolution.
  • 7. Deep Reinforcement Learning.
  • Presentation of reinforcement learning: control of an agent in a defined environment
  • By a state and possible actions
  • Use of a neural network to approximate the state function
  • Deep Q Learning: experience replay, and application to the control of a video game.
  • Optimization of learning policy. Onpolicy && offpolicy. Actor critic
  • architecture. A3C.
  • Applications: control of a single video game or a digital system.
 
 
  備案號(hào):備案號(hào):滬ICP備08026168號(hào)-1 .(2024年07月24日)....................
友情鏈接:Cadence培訓(xùn) ICEPAK培訓(xùn) PCB設(shè)計(jì)培訓(xùn) adams培訓(xùn) fluent培訓(xùn)系列課程 培訓(xùn)機(jī)構(gòu)課程短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 長期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班培訓(xùn) 南京 NS3培訓(xùn) OpenGL培訓(xùn) FPGA培訓(xùn) PCIE培訓(xùn) MTK培訓(xùn) Cortex訓(xùn) Arduino培訓(xùn) 單片機(jī)培訓(xùn) EMC培訓(xùn) 信號(hào)完整性培訓(xùn) 電源設(shè)計(jì)培訓(xùn) 電機(jī)控制培訓(xùn) LabVIEW培訓(xùn) OPENCV培訓(xùn) 集成電路培訓(xùn) UVM驗(yàn)證培訓(xùn) VxWorks培訓(xùn) CST培訓(xùn) PLC培訓(xùn) Python培訓(xùn) ANSYS培訓(xùn) VB語言培訓(xùn) HFSS培訓(xùn) SAS培訓(xùn) Ansys培訓(xùn) 短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 長期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班 端海 教育 企業(yè) 學(xué)院 培訓(xùn)課程 系列班 級(jí) 長期課程列表實(shí)踐課程高級(jí)課程學(xué)校培訓(xùn)機(jī)構(gòu)周末班 短期培訓(xùn)系列課程培訓(xùn)機(jī)構(gòu) 端海教育企業(yè)學(xué)院培訓(xùn)課程 系列班級(jí)
主站蜘蛛池模板: 日产乱码2021永久手机版 | 精品在线免费视频 | 久久久精品视频免费观看 | 青青草91视频 | 国产夫妻久久线观看 | 一二三四视频社区5在线高清视频 | 精品久久免费视频 | 四虎国产精品免费观看 | 九九视频免费精品视频免费 | 青青青草视频在线观看 | 久久大胆视频 | 亚洲欧美在线综合一区二区三区 | 在线毛片网 | 2021久久精品免费观看 | 欧美精品影视 | 玖玖精品在线观看 | 好操 | 国产精品毛片在线完整版sa | 农村寡妇一级毛片免费看视频 | 碰碰碰人人澡人人爱摸 | 久久精品蜜芽亚洲国产a | 欧美一区二区二区 | 天天摸天天 | 男人扒开女人下面狂躁的视频 | 美国大片免费观看45分钟 | 五月天啪啪 | 国产自产视频在线观看香蕉 | 火影忍者纲f手黄漫acg | 最近中文字幕2018动漫 | 日韩精品首页 | 一级毛片特级毛片免费的 | 日本高清在线免费观看 | 国产精品欧美一区二区在线看 | 国产乱老熟视频胖女人 | 久久影视精品 | 亚色影库 | 欧美一区二区三区精品影视 | 国产a三级三级三级 | 免费jjzz在线播放国产 | 欧美日韩国产一区二区三区欧 | 日韩成人在线网站 |